WHAT IS DUSTING?

Chalking or powdering at the surface of a concrete slab is called dusting. The characteristics of such surfaces are:

- They powder under any kind of traffic
- They can be easily scratched with a nail or even by sweeping.

WHY DO CONCRETE FLOORS DUST?

A concrete floor dusts under traffic because the wearing surface is weak. The weakness can be caused by:

1. Any finishing operation performed while bleed water is on the surface. Working this bleed water back into the top 1 mm of the slab produces a very high water-cement ratio and therefore, a low strength surface layer.
2. Inadequate protection of freshly placed concrete from rain, snow or drying winds.
3. Insufficient or no curing. This omission often results in a soft surface skin which will easily dust under foot traffic.
4. Floating and/or troweling of condensation moisture from warm humid air on cold concrete. In cold weather the concrete sets slowly, in particular cold concrete in basement floors. If the humidity is relatively high, water will condense on the freshly placed concrete which, if troweled into the surface, will cause dusting.
5. Inadequate ventilation in close quarters. Carbon dioxide from open salamanders, gasoline engines or generators, power buggies or mixer engines may cause a chemical reaction known as carbonation, which greatly reduces the strength and hardness of the concrete surface.
6. Placement over a non absorptive subgrade or polyethylene. This reduces normal absorption by the subgrade increases bleeding and, as a result the risk of surface dusting.
HOW TO PREVENT DUSTING:

1. In general, use concrete with a moderate slump (not over 100 mm). However, concrete with a higher slump (up to 150 mm or 180 mm) can be used providing the mixture is designed to produce the required strength without excessive bleeding and/or segregation. The higher slump levels may be used in hot weather when setting time is reduced and less time is available for bleeding. In cold weather delayed setting will increase bleeding and require use of lower slump. Concrete having a low water/cement ratio and moderate slump helps produce a strong wear resistant surface.

2. NEVER sprinkle or trowel dry cement into the surface of plastic concrete to absorb bleed water. Remove bleed water by dragging a garden hose across the surface. Excessive bleeding of concrete can be reduced by using airentrained concrete, by modifying mix proportions and by reducing setting time.

3. DO NOT perform any finishing operations with water present on the surface. Bleed water can be worked into surface fines from delayed bullfloating. Initial screeding must be promptly followed by bullfloating. Do not use a jitterbug to bring excess mortar to surface.

4. Avoid direct placement of concrete on polyethylene or non absorptive subgrades. Place 25 mm to 50 mm of damp sand over polyethylene or non absorptive subgrade, prior to concrete placement. On absorptive subgrades, dampen the surface just, prior to concrete placement.

5. Provide proper curing by using liquid membrane curing compound or by covering the surface with wet burlap. Protect young concrete from the environment.

6. When placing concrete in cold weather use warm concrete as well as possibly an accelerator.

HOW TO REPAIR DUSTING:

1. To minimize or eliminate dusting, apply a chemical floor hardener such as zinc or magnesium fluosilicate in compliance with manufacturer’s directions on thoroughly dried concrete. If dusting persists, use hardeners with cementitious properties (such as latex formulations), boiled linseed oil or paint.

2. In severe cases, a serviceable floor can be obtained by wetgrinding the top surface, followed by properly bonded placement of a topping course. If this is not practical, installation of a floor covering, such as carpeting or vinyl tile covering is the least expensive solution or severe dusting.